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Exercise 1.
We want to prove that any instance of an encryption scheme ΠG composed by three spaces

K,M,G such that ΠG = (Gen,Enc,Dec) with Enc(k,m) = G(k)⊕m and G is a pseudorandom
generator is not perfectly secure. Let’s check if for ΠG holds

|K| ≥ |M|

If G is a pseudorandom generator then it means it’s a deterministic algorithm that given as input
s ∈ {0, 1}n outputs a string G(s) ∈ {0, 1}ℓ(|s|) where ℓ is a polynomial defined as ℓ : N 7→ N. It’s
noticeable that G accepts at maximum 2n inputs and because of that generates at maximum 2n

strings of length l(|s|) while the number of possible strings of length ℓ(|s|) is 2l(|s|). Since it is
required for a pseudorandom generator that ∀n ∈ N, ℓ(n) > n we conclude that regarding ΠG we
have

|K| < |M| since

|K| = 2n and |M| = 2ℓ(n)

To prove that ΠG is not perfectly secure, we must rely on the property of pseudorandom generators
that ensures the output length ℓ(n) exceeds the input length n, where ℓ : N→ N is a polynomial
such that ∀n ∈ N, ℓ(n) > n.

Exercise 2.
The exercise consists of considering the following functions and demonstrating that none of

them are pseudorandom generators.

G1(x) = x · ⊕|x|
i=1xi G2(x) = F (0|x|, x) G3(x) = F (x, x) · x

• G1(x) is not a pseudorandom generator because it is easily distinguishable from a true
random source. To prove that G1(x) is not a pseudorandom generator we have to define a
distinguisher D such that |Pr(D(s) = 1)− Pr(D(G(r)) = 1) is not negligible. We define D
as follows:

D(x) :

w ← ⊕|x−1|
i=1 xi;

z = x||x−1|;

Return 1 if (w · z) = x

Observing that
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Pr(D(G1(r)) = 1) = 1

Pr(D(s) = 1) =
1

2n

|Pr(D(G1(r)) = 1)− Pr(D(s) = 1)| = 1− 1

2n

which is not negligible

(1)

• G2(x) uses a pseudorandom function to produce its output. F (k, x) should take k among
all strings of length |x| randomly. Defining F (k, x) with k = 0|x| means that the key is
fixed and that is not ideal. Furthermore, if F is a pseudorandom function than it is length
preserving i.e F (k, x) is defined iff |k| = |x| and in that case |F (k, x)| = |x|. Just observing
that we can conclude that G2(x) is not a pseudorandom function since its expansion factor
does not satisfy ℓ(n) > n, ∀n ∈ N. G2(x) does not expand x in any way (G2(x) ∈ {0, 1}|x|).

• G3(x) is not a pseudorandom function because from the output of G3(x) could be im-
mediately extracted the original input x from the last n bits. To prove that G3(x) is
not a pseudorandom generator we have to define a distinguisher D such that |Pr(D(s) =
1)− Pr(D(G(r)) = 1) is not negligible. We define D as follows:

D(x) :

n← ℓ−1(|x|);
z ← last n bits of x;

o← O(z);
Return 1 if o = x|n

where O is an oracle for F . D extracts the last n = |x| bits of G3(x) and query an oracle on
F with them. Then check if the output of the oracle is equal to the first n bits of x. If are
equal D can distinguish between a true random and G3(x) in a similar way to eq. 1.

Pr(D(G3(r)) = 1) = 1 if D receives G3(x) so the oracle behaves like F (x, x)

Pr(D(s) = 1) =
1

2n

|Pr(D(G3(r)) = 1)− Pr(D(s) = 1)| = 1− 1

2n

which is not negligible

(2)

The exercise 2 asks also to prove that none of the following binary functions is a pseudorandom
function.

F1(k, x) = k ⊕ x F2(k,m) = G(m)||k| F3(x) = G(k)||m|

• F1(k, x) is not a pseudorandom function because a distinguisher D can trivially recover the
key xoring the output of F1(k, x) with x i.e k = F1(k, x)⊕ x. To prove that F1(k, x) is not
a pseudorandom function we have to define a distinguisher D such that |Pr(DFk(·)(1n) =
1)− Pr(Df(·)(1n) = 1)| is not negligible.

2



D(1n) :

m0 ← 0n;

m1 ← 1n;

o0, o1 ← O(m0),O(m1);

w ← o0 ⊕ o1;

Return 1 if w = 1n

D can query the oracle O twice with m0 = 0n and m1 = 1n obtaining o1 and o2. Then D
checks if o1⊕ o2 = 1n returning 1 if it is the case since (k ⊕ 0n)⊕ (k ⊕ 1n) = 1n.

Pr(DFk(·)(1n) = 1) = 1

Pr(Df(·)(1n) = 1) =
1

2n

|Pr(DFk(·)(1n) = 1)− Pr(Df(·)(1n) = 1)| = 1− 1

2n

which is not negligible

(3)

• F2(k, x) outputs a string of length |m| since |k| = |m| for pseudorandom functions so the key
is kind of useless. To prove that F2(k, x) is not a pseudorandom function we have to define
a distinguisher D such that |Pr(DFk(·)(1n) = 1)− Pr(Df(·)(1n) = 1)| is not negligible.

D(1n) :

m← 1n

o← O(m);

g ← G(m);

Return 1 if o = g

D query an oracle with an arbitrary message m then query G(m) alone since we assume it
is public for Kerckhoffs’ principle. D compares the output of the oracle with G(m), if are
equals then D distinguishes with very high probability F2(k,m) from a true random string
s. What could happen is that G(m) outputs the same value of a true random f but it is
very unlikely.

Pr(DFk(·)(1n) = 1) = 1

Pr(Df(·)(1n) = 1) =
1

2n

|Pr(DFk(·)(1n) = 1)− Pr(Df(·)(1n) = 1)| = 1− 1

2n

which is not negligible

(4)

• F3(k, x) could not be a pseudorandom function because returns always a pseudorandom
generator applied to the key ignoring the message. As long as |m| remains constant, F2(k, x)
will always output the same truncated portion of G(k), which is trivial to distinguish from
a truly random function. To prove that F3(k, x) is not a pseudorandom function we have to
define a distinguisher D such that |Pr(DFk(·)(1n) = 1)−Pr(Df(·)(1n) = 1)| is not negligible.
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D(1n) :

m0,m1 ← 1n, 0n;

o0, o1 ← O(m0),O(m1);

Return 1 if o0 = o1

A distinguisher D could query an oracle two times with 2 arbitrary messages m0 and m1,
then checks if the results are equals returning 1 and distinguishing F3(k, x) from a true
random f with very high probability in a similar way to eq. 3 and 4.

Exercise 3.
Given Π = (Gen,Enc,Dec), ΠH,J = (Gen,Enc,Dec), H,G two permutations (bijective and

inversible) and EncH,J(k,m) andDecH,J(k, c) are defined as follows.

EncH,J(k,m) = J(Enc(k,H(m))) DecH,J(k, c) = H−1(Dec(k, J−1(c)))

It is required to prove that if Π is correct and secure against passive attacks, then ΠH,J is also
correct and secure against passive attacks. On the correctness of ΠH,J we can observe that:

c = J(Enc(k,H(m))) encrypt m

substitute c in the following

DecH,J(k, c) = H−1(Dec(k, J−1(c))) obtaining

DecH,J(k, c) = H−1(Dec(k, J−1(J(Enc(k,H(m))))))

J is bijective so we can rewrite as

DecH,J(k, c) = H−1(Dec(k, (Enc(k,H(m)))))

since Dec(k, (Enc(k,H(m))))) = H(m) by the correctness of Π

DecH,J(k, c) = H−1(H(m)) which is m since H is bijective.

ΠH,J is correct.
On the security against passive attacks of ΠH,J . Let’s proceed with a reduction proof: the

goal is to show that if the transformed scheme ΠH,J can be broken, then the original scheme Π
can be broken. We want to prove that

Π correct and secure against eav ⇒ ΠH,J correct and secure against eav

We can try to build an adversary that succeeds in breaking ΠH,J and use it as a subroutine to
build an adversary that succeeds in breaking Π.

∀B ∈ PPT.¬BRK(B,Π)⇒ ∀A ∈ PPT.¬BRK(A,ΠH,J)

⇓
∃A ∈ PPT.BRK(A,ΠH,J)⇒ ∃B ∈ PPT.BRK(B,Π)

Let’s look at the experiment PrivKeav
B,Π defined using A as a subroutine (pseudocode 1 and

pseudocode 2). The adversary B interacts with the original encryption scheme Π, but it internally
uses A to distinguish between encrypted messages. B transforms the messages by applying the
bijection H, and it transforms the ciphertexts by applying J−1 before passing them to A. Thus,
B simulates the environment of ΠH,J for A, making A think it is interacting with ΠH,J when in
fact it is interacting with Π. The adversary B succeeds in breaking the security of Π whenever A
succeeds in breaking ΠH,J .
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Algorithm 1 PrivKeav
A,ΠH,J

k ← Gen(1n)
m0,m1 ← A(1n)
if |m0| ≠ |m1| then

return 0
end if
b← {0, 1}
c← EncΠH,J

(k,m)
b∗ ← A(c)
return ¬(b∗ ⊕ b)

Algorithm 2 PrivKeav
B,Π

k ← GenΠ(1
n)

m0,m1 ← B(1n)
m0,m1 ← H(m0), H(m1)
if |m0| ≠ |m1| then

return 0
end if
b← {0, 1}
c← J−1(EncΠ(k,mb)) ▷ Notice H has been applied to mb

b∗ ← A(c)
return ¬(b∗ ⊕ b)

Π is assumed to be secure against passive attacks i.e Pr(PrivKeav
B,Π) =

1
2 + ϵ(n) where ϵ(n) is

negligible, the same for the experiment PrivKeav
A,B since the two experiments are basically the same.

Since the existence of an adversary A that breaks ΠH,J implies the existence of an adversary B
that breaks Π, we conclude that if Π is secure against passive attacks, then ΠH,J must also be
secure against passive attacks.

On the security against cpa attacks of ΠH,J . If Π is probabilistic, then ΠH,J can also be con-
sidered secure against CPA attacks, assuming that the transformations H and J do not undermine
that property.
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