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Exercise 1.

We want to prove that any instance of an encryption scheme II¢ composed by three spaces
K, M, G such that 11 = (Gen, Enc, Dec) with Enc(k,m) = G(k) @ m and G is a pseudorandom
generator is not perfectly secure. Let’s check if for II holds

Kl = M|

If G is a pseudorandom generator then it means it’s a deterministic algorithm that given as input
s € {0,1}" outputs a string G(s) € {0,1}(5) where ¢ is a polynomial defined as ¢ : N~ N. Tt’s
noticeable that G accepts at maximum 2™ inputs and because of that generates at maximum 2"
strings of length I(|s|) while the number of possible strings of length £(|s]) is 2!(5D. Since it is
required for a pseudorandom generator that Vn € N, £(n) > n we conclude that regarding I1¢ we
have
|K] < |M] since
IK| = 2" and |[M| = 2¢™)

To prove that II is not perfectly secure, we must rely on the property of pseudorandom generators

that ensures the output length £(n) exceeds the input length n, where £ : N — N is a polynomial
such that Vn € N, £(n) > n.

Exercise 2.
The exercise consists of considering the following functions and demonstrating that none of
them are pseudorandom generators.

Gi(x) =z -0l e, Gax)=F(0",2)  Gs(z)=F(a,2) a

7

e G1(z) is not a pseudorandom generator because it is easily distinguishable from a true
random source. To prove that G;(x) is not a pseudorandom generator we have to define a
distinguisher D such that |Pr(D(s) = 1) — Pr(D(G(r)) = 1) is not negligible. We define D
as follows:

D(z):
w < @LZ”%‘;
z = m‘lx—l“

Return 1 if (w-2) =«

Observing that



Pr(D(G1(r) = 1) = 1

Pr(D(s) = 1) = Qin )
IPr(D(G1(r)) = 1) — Pr(D(s) = 1)] = 1 — zin

which is not negligible

e Go(x) uses a pseudorandom function to produce its output. F(k,z) should take k among
all strings of length |z| randomly. Defining F(k,z) with k = 0/*l means that the key is
fixed and that is not ideal. Furthermore, if F' is a pseudorandom function than it is length
preserving i.e F(k,x) is defined iff |k| = |2| and in that case |F'(k,z)| = |x|. Just observing
that we can conclude that G3(z) is not a pseudorandom function since its expansion factor
does not satisfy £(n) > n, ¥n € N. Go(x) does not expand x in any way (Ga(x) € {0,1}1).

e G3(z) is not a pseudorandom function because from the output of Gs(z) could be im-
mediately extracted the original input z from the last n bits. To prove that Gs(z) is
not a pseudorandom generator we have to define a distinguisher D such that |Pr(D(s) =
1) — Pr(D(G(r)) = 1) is not negligible. We define D as follows:

D(x):

n L7 (|z));

z < last n bits of z;
0+ O(z);

Return 1 if 0o = z|,

where O is an oracle for F'. D extracts the last n = |z| bits of G3(z) and query an oracle on
F with them. Then check if the output of the oracle is equal to the first n bits of z. If are
equal D can distinguish between a true random and G3(z) in a similar way to eq.

Pr(D(Gs(r)) =1) =1 if D receives G3(x) so the oracle behaves like F(z, x)

Pr(D(s) = 1) = 2in N
[Pr(D(G3(r)) = 1) — Pr(D(s) = 1)| = 1 — 2%

which is not negligible

The exercise 2 asks also to prove that none of the following binary functions is a pseudorandom
function.

Fi(k,z)=kex  Foy(k,m)=Gm)x  Fs3(z) = GE)|m|

e Fi(k,x) is not a pseudorandom function because a distinguisher D can trivially recover the
key xoring the output of Fy(k,x) with = i.e k = Fy(k,x) ® x. To prove that F;(k,x) is not
a pseudorandom function we have to define a distinguisher D such that | Pr(D+()(17) =
1) — Pr(D70)(1") = 1)| is not negligible.



D(1™):

mg < 0™;

my < 1™

09,01 < O(my), O(m1);
w < 09 D o01;

Return 1 if w =17

D can query the oracle O twice with mg = 0™ and m; = 1™ obtaining 0; and oy. Then D
checks if 01 @ 02 = 1™ returning 1 if it is the case since (k@ 0™) & (k¢ 1™) = 1".

Pr(DF*O (1M =1) =1

Pr(D/O(1") =1) = 2%
1 (3)
|Pr(DFPO(1™) = 1) — Pr(DFO(1™) = 1) =1 — o

which is not negligible

e F5(k,x) outputs a string of length |m/| since |k| = |m| for pseudorandom functions so the key
is kind of useless. To prove that Fy(k, ) is not a pseudorandom function we have to define
a distinguisher D such that | Pr(DFx()(17) = 1) — Pr(D/) (1) = 1)| is not negligible.

D(1™):

m <+ 1"

0+ O(m);

g+ G(m);
Return 1 ifo=g

D query an oracle with an arbitrary message m then query G(m) alone since we assume it
is public for Kerckhoffs’ principle. D compares the output of the oracle with G(m), if are
equals then D distinguishes with very high probability Fy(k, m) from a true random string
s. What could happen is that G(m) outputs the same value of a true random f but it is
very unlikely.

Pr(D*O (1M =1) =1

Pr(DfO(1") =1) = in
2 (4)
|Pr(DF*C)(17) = 1) - Pr(DIO (1) =1)| =1 — o

which is not negligible

e F3(k,x) could not be a pseudorandom function because returns always a pseudorandom
generator applied to the key ignoring the message. As long as |m/| remains constant, Fy(k, x)
will always output the same truncated portion of G(k), which is trivial to distinguish from
a truly random function. To prove that F5(k, ) is not a pseudorandom function we have to
define a distinguisher D such that | Pr(D**()(1") = 1) —=Pr(D7()(1") = 1)] is not negligible.



D(1™):
mg, mp < 1™,0™;
0p, 01 < O(m0)70(m1),

Return 1 if o9 = 04

A distinguisher D could query an oracle two times with 2 arbitrary messages mg and my,
then checks if the results are equals returning 1 and distinguishing F5(k,x) from a true
random f with very high probability in a similar way to eq. [3] and

Exercise 3.
Given IT = (Gen, Enc, Dec), Il ; = (Gen, Enc, Dec), H, G two permutations (bijective and
inversible) and Ency, j(k,m) andDecy j(k,c) are defined as follows.

Ency j(k,m) = J(Enc(k, H(m))) Decy j(k,c) = H Y (Dec(k,J(c)))

It is required to prove that if II is correct and secure against passive attacks, then Il ; is also
correct and secure against passive attacks. On the correctness of IIz ; we can observe that:

¢ = J(Enc(k,H(m))) encrypt m

substitute c in the following

Decyr j(k,c¢) = H ' (Dec(k,J*(c))) obtaining

Decy j(k,c) = H Y (Dec(k, J~ ' (J(Enc(k, H(m))))))

J is bijective so we can rewrite as

Decyr j(k,c¢) = H Y (Dec(k, (Enc(k, H(m)))))

since Dec(k, (Enc(k, H(m))))) = H(m) by the correctness of II
Decy y(k,c) = H™'(H(m)) which is m since H is bijective.

IIg, 5 is correct.

On the security against passive attacks of Il ;. Let’s proceed with a reduction proof: the
goal is to show that if the transformed scheme Il ; can be broken, then the original scheme II
can be broken. We want to prove that

IT correct and secure against eav = Ilg ; correct and secure against eav

We can try to build an adversary that succeeds in breaking Ily ; and use it as a subroutine to
build an adversary that succeeds in breaking II.

VB € PPT.~BRK(B,II) = VA € PPT.~BRK(A,1ly ;)

\
3A € PPT.BRK(A,1ly ;) = 3B € PPT.BRK (B, 1)

Let’s look at the experiment PrivKgf’ﬁ defined using A as a subroutine (pseudocode [1| and

pseudocode [2)). The adversary B interacts with the original encryption scheme II, but it internally
uses A to distinguish between encrypted messages. B transforms the messages by applying the
bijection H, and it transforms the ciphertexts by applying J ! before passing them to 4. Thus,
B simulates the environment of Iy ; for A, making A think it is interacting with Iy ; when in
fact it is interacting with II. The adversary B succeeds in breaking the security of II whenever A
succeeds in breaking Ilg ;.



Algorithm 1 PrivK%'y;,

k < Gen(1™)

mo,my < A(ln)

if |mg| # |mq| then
return 0

end if

b+« {0,1}

¢ < Encr,, ,(k,m)

b* « A(c)

return —(b* @ b)

Algorithm 2 PrivKE'y;

k + Genp(1™)
mo,my < B(ln)
mo,my <— H(mo), H(ml)
if |mg| # |m1| then
return 0
end if
b+« {0,1}
¢+ J ' (Encr(k,my)) > Notice H has been applied to my,
b* «+ A(c)
return —(b* & b)

IT is assumed to be secure against passive attacks i.e Pr(PrivKg) = & + e(n) where €(n) is

negligible, the same for the experiment PrivK4"; since the two experiments are basically the same.
Since the existence of an adversary A that breaks IT u,s implies the existence of an adversary B
that breaks II, we conclude that if II is secure against passive attacks, then Ily ; must also be
secure against passive attacks.

On the security against cpa attacks of Il ;. If II is probabilistic, then Il ; can also be con-
sidered secure against CPA attacks, assuming that the transformations H and J do not undermine
that property.



